
(1)

(2)

Elements of Matrix Algebra

Definition of a Matrix

Definition: A matrix is a rectangular array of numbers. These numbers are arranged in rows

and columns.

Consider matrix X with R rows and C columns, that is, the R x C matrix X. The numbers

in this matrix are arranged as follows:

with i = 1, ..., R and j = 1, ..., C.

Example of a 2 x 3 matrix with its elements:
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Types of Matrices

1. Square matrices. Matrices are square if the number of rows equals the number of

columns. For example, matrices with dimensions 2 x 2 or 5 x 5 are square. The following

is an example of a 2 x 2 matrix.

2. Column vectors. A matrix with only one column is termed a column vector. For

example, the following are sample dimensions of column vectors: 7 x 1, 3 x 1 and 2 x 1.

The following is an example of a 3 x 1 column vector:
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3. Row vectors. A matrix with only one row is termed a row vector. The following are

sample dimensions of row vectors: 1 x 2, 1 x 45, 1 x 3. The following is an example of a

row vector: 

4. Diagonal matrices. A square matrix with numbers in its diagonal cells and zeros in its off-

diagonal cells is termed diagonal matrix 11 22. The elements x , x , ... describe the main

diagonal of matrix X, that is, the main diagonal of a matrix is constituted by the cells with

equal indexes. For example, the diagonal cells of a 3 x 3 matrix have indexes 11, 22, and

33. These are the cells that go from the upper left corner to the lower right corner of a

matrix. When a matrix is referred to as diagonal, reference is made to a matrix with a main

diagonal. The following is an example of a 3 x 3 diagonal matrix:

Usually, diagonal matrices are written as

where n is the number of rows and columns, as diagonal matrices are always square

matrices.

5. Scalrar and Identity matrices. 11 22 33 nnA diagonal matrix with elements d  = d  = d  = ... =d  = c

is called Scalar Matrix. If, in addition, the constant c = 1, the matrix is termed Identity

Matrix n. The symbol for an n x n identity matrix is I , for example
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6. Triangular matrices. ijA square matrix with elements s  = 0 for j < i is termed upper

triangular matrix. Example of a 2 x 2 upper triangular matrix:

ijA square matrix with elements s  = 0 for j > i is termed lower triangular matrix.

Example of a 3 x 3 lower triangular matrix:

Diagonal matrices are both upper and lower triangular.
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Operations with Matrices I: Transposition

Consider the r x c matrix, X. Interchanging rows and columns of X yields X', the transpose of

X . By transposing X, one moves cell ij to be cell ji.  The following example transposes the 2 x 31

matrix, X.

Operations with Matrices II: Addition and Subtraction

Adding and subtracting matrices is only possible if the dimensions of the matrices are the same.

a a b bFor instance, adding A with dimensions r  and c  and B with dimensions r  and c  can be

a b a bperformed only if both r  = r  and c  = c . This is the case in the following example of matrix

subtraction.

Operations with Matrices III: Multiplication

This module covers three aspects of matrix multiplication:

(1) Multiplication of a matrix with a scalar,

(2) Multiplication of two matrices with each other, and

(3) Multiplication of two vectors.

Multiplication of a matrix with a scalar is performed by multiplying each of its elements with

the scalar. For example, multiplication of scalar c = 3 with matrix L yields

Instead of the prime symbol, ', one also finds in the literature the symbol  to denote a1 T

transpose.
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Multiplication of two matrices. Matrices must possess one specific characteristic to be

multipliable with each other. Consider the two matrices, A and B. Researchers wish to multiply

them to calculate the matrix product AB. This is possible only if the number of columns of A is

equal to the number of rows of B. For example, to be able to X with Y, X must have dimensions z

x s and Y must have dimensions s x c. 

The resulting matrix has the number of rows of X and the number of columns of Y. In the present

example, the product XY has dimensions z x c.

When multiplying two matrices one follows the following procedure: one multiplies row

by column, and each element of the row is multiplied by the corresponding element of the

column. The resulting products are summed. This sum of products is one of the elements of the

resulting matrix with row index carried over from the row of the postmultiplied matrix and

column index carried over from the column of the premultiplied matrix.

Consider the following example. A researcher wishes to postmultiply matrix X with matrix

Y where X has dimensions 3 x 2 and matrix Y has dimensions 2 x 2. Then, the product XY of the

two matrices can be calculated using the following multiplication procedure:

Multiplication of two vectors with each other. Everything that was said concerning the

multiplication of matrices carries over to the multiplication of two vectors a and b, with no

change. So, no extra rules need to be memorized. 

Only the products of a row vector with a column vector and the product of a column vector with
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a row vector are possible. These two products have special names. The product of a row vector

with a column vector, that is a’b is called the inner product, dot product, or scalar product.

The product of a column vector with a row vector ab’ is called the outer product (or,

simply, vector product), and yields a matrix with number of rows equal to the number of

elements of a and number of columns equal to the number of elements of b. In the present

context, the inner product is more important.
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Consider the following example of the two three-element vectors, a’ and b. a’ has

dimensions 1 x 3 and b has dimensions 3 x 1. Multiplication of a’ with b yields the inner product
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Multiplying a with b' yields the vector product

The Rank of a Matrix

A relatively simple method for determining whether rows or columns of a matrix are linearly

independent involves application of such linear operations as addition/subtraction and

multiplication/division. Consider the following example of a 3 x 3 matrix:

The columns of this matrix are linearly dependent. The following operations yield a row vector

with only zero elements:

1. Multiply the second column by two; this yields -4, 4, -6;

2. Add the result of Step 1 to the first column; this yields -3, 0, -1;

3. Subtract the third column from the result obtained in the second step; this yields 0, 0, 0.
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Thus, the columns are linearly dependent.

If the columns of a matrix are linearly independent, the rows are independent also, and

vice versa.

To introduce the concept of rank of a matrix, consider matrix X with dimensions r x c.

The rank of a matrix is defined as the number of linearly independent rows of this matrix. If the

rank of a matrix equals the number of columns, that is, rank (X) = c, the matrix has full column

rank. Accordingly, if rank (X) = r, the matrix has full row rank. If a square matrix has full

column rank (and, therefore, full row rank as well), it is said to be non-singular. In this case, the

inverse of this matrix exists (see the following section).

The Inverse of a Matrix

There is no direct way of performing divisions of matrices. One uses inverses of matrices

instead. To explain the concept of an inverse consider the two matrices, A and B. Suppose we

postmultiply A with B and obtain

where I is the identity matrix. Then, we call B the inverse of A. Usually, inverse matrices are

identified by the superscript .-1

For an inverse to exist, a matrix must be non-singular, square (although not all square

matrices have an inverse), and of full rank.

Calculating an inverse for a matrix can require considerable amounts of computing.

Therefore, we do not provide the specific procedural steps for calculating an inverse in general.

All major statistical software packages include modules that calculate inverses of matrices.

However, we do give examples for two special cases, for which inverses are easily calculated.

These examples are the inverses of diagonal matrices and inverses of matrices of 2 x 2 matrices.

The inverse of a diagonal matrix is determined by calculating the reciprocal values of its

diagonal elements 11 22 33. Consider the 3 x 3 diagonal matrix A = diag (a , a , a ). The inverse of this

11 22 33matrix is A  = diag (1/a , 1/a , 1/a ). This can be illustrated by postmultiplying A with A-1 -1

(premultiplying yields the same result):
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Consider the following numerical example of a 2 x 2 diagonal matrix:

Multiplying A with A  results in-1

which illustrates that multiplying a matrix by its inverse yields an identity matrix. The inverse of



Matrix Algebra, p.  12

(23)

(24)

(25)

a 2 x 2 matrix, X , can be calculated as follows:-1

or, after setting 

we obtain

Inverses of matrices are needed to replace algebraic division. This is most important when

solving equations. 

Consider the following example. We have the matrix equation AX = BY that we wish to

solve for Y. Dividing the entire equation by B is not an option because matrix division is not

defined. Therefore, we perform the following steps:
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1. Premultiply both sides of the equation with B . This yields -1

B AX = B BY.-1 -1

2. Because of B BY = IY = Y we have a solution for the equation. It is-1

Y = B AX.-1

The Determinant of a Matrix

The determinant of a matrix is defined as a function that assigns a real valued number to this

matrix. Determinants are defined only for square matrices. Five characteristics of determinants:

1. A matrix X is non-singular if and only if the determinant, abbreviated |X| or det X, is

different than 0.

2. If a matrix X is non-singular, the following holds:
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3. The determinant of a diagonal or triangular matrix equals the product of its diagonal

elements:

4. The determinant of a product of two matrices equals the product of the two determinants

5. The determinant of the transpose of a matrix equals the determinant of the original matrix:


